Nuwe resepte

Kollege-studente bou 'n huis met sonkrag wat binnenshuis voedsel kan verbou

Kollege-studente bou 'n huis met sonkrag wat binnenshuis voedsel kan verbou

Kyk na hierdie indrukwekkende huis wat gebaseer is op selfvoorsiening

'N Span gegradueerde studente van die Universiteit van Maryland het die prys in die tweede plek in die Solar Decathlon huis toe geneem deur 'n huis op sonkrag te skep wat kos binnenshuis kan verbou.

'N Span gegradueerde studente van die Universiteit van Maryland het 'n tweede plek behaal in die Solar Decathlon van hierdie jaar vir hul huisontwerp met sonkrag wat hidroponiese boerdery bied. Departement se energie se tweejaarlikse kompetisie vir omgewingsvriendelike behuisingsprototipes, wat voorleggings van universiteitsstudente regoor die wêreld lewer.

Die huis, wat 18 maande geneem het om te ontwerp, beskik oor 'n 'lewende muur' wat blaargroen groente in voedingsryke water verbou, 'n dak van sonpanele wat sonlig opvang vir energie wat gebruik word om die huis aan te dryf, 'n omheinde kweekhuis wat 'n stelsel gebruik om warm lug in die herfs en winter deur die huis te versprei, en 'n kompostoilet.

Die ReACT -span het gesê Business Insider dat die huis ideaal sou wees vir inheemse Amerikaanse gemeenskappe vanweë hul klem op selfvoorsiening.

"ReACT omvat opkomende volhoubare boupraktyke wat beloof om stambehuisingsprojekte te transformeer en te ondersteun, terwyl die tweederdes van die inheemse Amerikaners wat in stedelike sentrums woon, huisvestingsopsies bied wat 'n meer harmonieuse, gebalanseerde en volhoubare interaksie met die natuurlike wêreld ondersteun," het hulle aan die winkel gesê.

Volgens beoordelaars van Decathlon het die ReACT-huis sy nommer 2-plek verseker vir sy fokus op tuinmaak en hergebruik van water. Konsentreer u daarop om vriendeliker teenoor die planeet te wees? Hier is 20 maniere om meer omgewingsvriendelik te wees.


Studie vind dat plante goed sou groei in kweekhuise met sonselle

'N Onlangse studie toon dat blaarslaai in kweekhuise verbou kan word wat golflengtes van lig wat gebruik word om sonkrag op te wek, uitfilter, wat bewys dat dit moontlik is om deurskynende sonpanele in kweekhuise te gebruik om elektrisiteit op te wek.

"Ons was 'n bietjie verbaas-daar was geen werklike afname in plantgroei of gesondheid nie," sê Heike Sederoff, mede-ooreenstemmende skrywer van die studie en professor in plantbiologie aan die North Carolina State University. "Dit beteken dat die idee om deursigtige sonselle in kweekhuise te integreer, gedoen kan word."

Omdat plante nie al die golflengtes van lig vir fotosintese gebruik nie, het navorsers die idee ondersoek om halfdeursigtige organiese sonselle te skep wat hoofsaaklik golflengtes van lig absorbeer waarop plante nie staatmaak nie, en die sonselle in kweekhuise op te neem. Vroeër werk van NC  State het gefokus op hoeveel energie kweekhuise met sonkrag kan produseer. Afhangende van die ontwerp van die kweekhuis en waar dit geleë is, kan sonselle baie kweekhuise energie -neutraal maak - of selfs toelaat dat hulle meer krag opwek as wat hulle gebruik.

Maar tot nou toe was dit nie duidelik hoe hierdie halfdeursigtige sonpanele kweekgewasse kan beïnvloed nie.

Om die probleem aan te spreek, het navorsers gewasse van rooi blaarslaai (Lactuca sativa) vir 30 dae in kweekkamers - van saad tot volle volwassenheid. Die groeitoestande, van temperatuur en water tot kunsmis en CO2 konsentrasie, was almal konstant - behalwe vir lig.

'N Kontrolegroep blaarslaai is blootgestel aan die volle spektrum van wit lig. Die res van die blaarslaai is in drie eksperimentele groepe verdeel. Elkeen van hierdie groepe is aan lig blootgestel deur verskillende soorte filters wat golflengtes van lig absorbeer wat gelykstaande is aan wat verskillende soorte halfdeursigtige sonselle sou absorbeer.

"Die totale hoeveelheid lig wat op die filters ingeval het, was dieselfde, maar die kleursamestelling van die lig was vir elkeen van die eksperimentele groepe anders," sê Harald Ade, mede-ooreenstemmende skrywer van die studie en die Goodnight Innovation Distinguished Professor of Physics by NC  Staat.

"Ons het spesifiek die verhouding van blou lig tot rooi lig in al drie filters gemanipuleer om te sien hoe dit die groei van plante beïnvloed," sê Sederoff.

Om die effek van die verwydering van verskillende golflengtes van lig te bepaal, het die navorsers 'n magdom plantkenmerke beoordeel. Die navorsers het byvoorbeeld baie aandag gegee aan sigbare eienskappe wat belangrik is vir produsente, kruideniers en verbruikers, soos blaargetal, blaargrootte en hoeveel blaarslaai geweeg het. Maar hulle het ook merkers van plantgesondheid en voedingskwaliteit beoordeel, soos hoeveel CO2 die plante opgeneem het en die vlakke van verskillende antioksidante.

"Ons het nie net 'n betekenisvolle verskil tussen die kontrolegroep en die eksperimentele groepe gevind nie; ons het ook geen beduidende verskil tussen die verskillende filters gevind nie," sê Brendan O'Connor, mede-ooreenstemmende skrywer van die studie en 'n medeprofessor van meganiese en ruimtevaartingenieurswese by NC  State.

"Daar is ook komende werk wat in meer detail ingaan op die maniere waarop die oes van verskillende golflengtes die biologiese prosesse van blaarslaai, tamaties en ander gewasse beïnvloed," sê Sederoff.

"Dit is belowend vir die toekoms van kweekhuise met sonkrag," sê Ade. 'Om produsente te laat gebruik om hierdie tegnologie te gebruik, sal 'n moeilike argument wees as daar 'n verlies aan produktiwiteit is. Maar nou is dit 'n eenvoudige ekonomiese argument oor die vraag of die investering in nuwe kweekhuistegnologie deur energieproduksie en besparing vergoed sal word.

"Op grond van die aantal mense wat my gekontak het oor kweekhuise op sonkrag toe ons vorige werk in hierdie ruimte gepubliseer het, is daar baie belangstelling van baie produsente," sê O'Connor. 'Ek dink dat die belangstelling net gaan toeneem. Ons het genoeg bewys-van-konsep-prototipes gesien om te weet dat hierdie tegnologie in beginsel haalbaar is; ons moet net sien hoe 'n onderneming die sprong neem en op skaal begin produseer. "

Die koerant, 'Balanseer gewasproduksie en energie -oes in organiese kweekhuise met sonkrag', verskyn in die joernaal Selverslae Fisiese Wetenskap. Mede-hoofskrywers van die koerant is NC  State Ph.D. studente Melodi Charles en Eshwar Ravishankar. Die koerant is mede-outeur van Yuan Xiong, 'n navorsingsassistent by NC   State Reece Henry en Ronald Booth, Ph. D.-studente aan NC  State Jennifer Swift, John Calero en Sam Cho, tegnici by NC  State Taesoo Kim, 'n navorsingswetenskaplike by NC   State Yunpeng Qin en Carr Hoi Yi Ho, postdoktorale navorsers by NC   State Franky So, Walter en Ida Freeman Uitstekende professor in materiaalwetenskap en ingenieurswese by NC   State Aram Amassian, 'n medeprofessor in materiaalwetenskap en ingenieurswese by NC   State Carole Saravitz, 'n navorsings -mede -professor in plantbiologie aan NC  State Jeromy Rech en Wei You van die Universiteit van Noord -Carolina in Chapel Hill en Alex H. Balzer en Natalie Stingelin van die Georgia Institute of Technology.

Die werk is uitgevoer met ondersteuning van die National Science Foundation onder toelaes 1639429 en 1905901 die Office of Naval Research, onder toelaes N00014-20-1-2183, N00014-17-1-2242 en N00014-17-1-2204 North Carolina State Universiteit en NextGen Nano Beperk.

Opmerking aan redakteurs: Die studie -opsomming volg.

'Balanseer gewasproduksie en oes van energie in organiese kweekhuise met sonkrag'

Skrywers: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff en Brendan T. O'Connor, Noord -Carolina Staatsuniversiteit Jeromy Rech en Wei You, Universiteit van Noord -Carolina by Chapel Hill en Alex H. Balzer en Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: 17 Maart, Selverslae Fisiese Wetenskap

Opsomming: Deur halfdeursigtige organiese sonselle (ST-OSC's) by 'n kweekhuisstruktuur te voeg, kan gelyktydige plantverbouing en elektrisiteit opgewek word, wat die vraag na kweekhuisenergie verminder. Daar is egter 'n behoefte om die impak van sulke stelsels op plantegroei en binneklimaat vas te stel en om stelselafwykings te optimaliseer. In hierdie werk oorweeg ons plantgroei onder OSC's en stelselrelevante ontwerp. Eerstens evalueer ons die groei van rooi blaarslaai onder ST-OSC-filters en vergelyk die impak van drie verskillende OSC-aktiewe lae met 'n unieke transmissie. Ons vind geen beduidende verskille in die vars gewig en chlorofilinhoud van die blaarslaai wat onder hierdie OSC -filters verbou word nie. Boonop bied OSC's 'n geleentheid vir verdere lig- en termiese bestuur van die kweekhuis deur middel van toestelontwerp en optiese bedekkings. Die OSC's kan dus die aanleggroei, kragopwekking en termiese las van die kweekhuis beïnvloed, en hierdie ontwerpruimte word hersien en geïllustreer.


Studie vind dat plante goed sou groei in kweekhuise met sonkragselle

'N Onlangse studie toon dat blaarslaai in kweekhuise verbou kan word wat golflengtes van lig wat gebruik word om sonkrag op te wek, uitfilter, wat bewys dat dit moontlik is om deurskynende sonpanele in kweekhuise te gebruik om elektrisiteit op te wek.

"Ons was 'n bietjie verbaas-daar was geen werklike afname in plantgroei of gesondheid nie," sê Heike Sederoff, mede-ooreenstemmende skrywer van die studie en professor in plantbiologie aan die North Carolina State University. "Dit beteken dat die idee om deursigtige sonselle in kweekhuise te integreer, gedoen kan word."

Omdat plante nie al die golflengtes van lig vir fotosintese gebruik nie, het navorsers die idee ondersoek om halfdeursigtige organiese sonselle te skep wat hoofsaaklik golflengtes van lig absorbeer waarop plante nie staatmaak nie, en die sonselle in kweekhuise op te neem. Vroeër werk van NC  State het gefokus op hoeveel energie kweekhuise met sonkrag kan produseer. Afhangende van die ontwerp van die kweekhuis en waar dit geleë is, kan sonselle baie kweekhuise energie -neutraal maak - of selfs toelaat dat hulle meer krag opwek as wat hulle gebruik.

Maar tot nou toe was dit nie duidelik hoe hierdie halfdeursigtige sonpanele kweekgewasse kan beïnvloed nie.

Om die probleem aan te spreek, het navorsers gewasse van rooi blaarslaai (Lactuca sativa) vir 30 dae in kweekkamers - van saad tot volle rypheid. Die groeitoestande, van temperatuur en water tot kunsmis en CO2 konsentrasie, was almal konstant - behalwe vir lig.

'N Kontrolegroep blaarslaai is blootgestel aan die volle spektrum van wit lig. Die res van die blaarslaai is in drie eksperimentele groepe verdeel. Elkeen van hierdie groepe is aan lig blootgestel deur verskillende soorte filters wat golflengtes van lig absorbeer wat gelykstaande is aan wat verskillende soorte halfdeursigtige sonselle sou absorbeer.

"Die totale hoeveelheid lig wat op die filters ingeval het, was dieselfde, maar die kleursamestelling van die lig was vir elkeen van die eksperimentele groepe anders," sê Harald Ade, mede-ooreenstemmende skrywer van die studie en die Goodnight Innovation Distinguished Professor of Physics by NC  Staat.

"Ons het spesifiek die verhouding van blou lig tot rooi lig in al drie filters gemanipuleer om te sien hoe dit die groei van plante beïnvloed," sê Sederoff.

Om die effek van die verwydering van verskillende golflengtes van lig te bepaal, het die navorsers 'n magdom plantkenmerke beoordeel. Die navorsers het byvoorbeeld baie aandag gegee aan sigbare eienskappe wat belangrik is vir produsente, kruideniers en verbruikers, soos blaargetal, blaargrootte en hoeveel blaarslaai geweeg het. Maar hulle het ook merkers van plantgesondheid en voedingskwaliteit beoordeel, soos hoeveel CO2 die plante opgeneem het en die vlakke van verskillende antioksidante.

"Ons het nie net 'n betekenisvolle verskil tussen die kontrolegroep en die eksperimentele groepe gevind nie, ons het ook geen beduidende verskil tussen die verskillende filters gevind nie," sê Brendan O'Connor, mede-ooreenstemmende skrywer van die studie en 'n medeprofessor van meganiese en ruimtevaartingenieurswese by NC  State.

"Daar is ook komende werk wat in meer detail ingaan op die maniere waarop die oes van verskillende golflengtes die biologiese prosesse van blaarslaai, tamaties en ander gewasse beïnvloed," sê Sederoff.

"Dit is belowend vir die toekoms van kweekhuise met sonkrag," sê Ade. 'Om produsente te laat gebruik om hierdie tegnologie te gebruik, sal 'n moeilike argument wees as daar 'n verlies aan produktiwiteit is. Maar nou is dit 'n eenvoudige ekonomiese argument oor die vraag of die investering in nuwe kweekhuistegnologie deur energieproduksie en besparing vergoed sal word.

"Op grond van die aantal mense wat my gekontak het oor kweekhuise op sonkrag toe ons vorige werk in hierdie ruimte gepubliseer het, is daar baie belangstelling van baie produsente," sê O'Connor. 'Ek dink dat die belangstelling net gaan toeneem. Ons het genoeg bewys-van-konsep-prototipes gesien om te weet dat hierdie tegnologie in beginsel haalbaar is; ons moet net sien hoe 'n onderneming die sprong neem en op skaal begin produseer. "

Die koerant, 'Balanseer gewasproduksie en energie -oes in organiese kweekhuise met sonkrag', verskyn in die joernaal Selverslae Fisiese Wetenskap. Mede-hoofskrywers van die koerant is NC  State Ph.D. studente Melodi Charles en Eshwar Ravishankar. Die koerant is mede-outeur van Yuan Xiong, 'n navorsingsassistent by NC   State Reece Henry en Ronald Booth, Ph. D. studente aan NC  State Jennifer Swift, John Calero en Sam Cho, tegnici van NC  State Taesoo Kim, 'n navorsingswetenskaplike by NC   State Yunpeng Qin en Carr Hoi Yi Ho, postdoktorale navorsers by NC   State Franky So, Walter en Ida Freeman Uitstekende professor in materiaalwetenskap en ingenieurswese by NC   State Aram Amassian, 'n medeprofessor in materiaalwetenskap en ingenieurswese by NC   State Carole Saravitz, 'n navorsings -mede -professor in plantbiologie aan NC  State Jeromy Rech en Wei You van die Universiteit van Noord -Carolina in Chapel Hill en Alex H. Balzer en Natalie Stingelin van die Georgia Institute of Technology.

Die werk is uitgevoer met ondersteuning van die National Science Foundation onder toelaes 1639429 en 1905901 die Office of Naval Research, onder toelaes N00014-20-1-2183, N00014-17-1-2242 en N00014-17-1-2204 North Carolina State Universiteit en NextGen Nano Beperk.

Opmerking aan redakteurs: Die studie -opsomming volg.

'Balanseer gewasproduksie en oes van energie in organiese kweekhuise met sonkrag'

Skrywers: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff en Brendan T. O'Connor, Noord -Carolina Staatsuniversiteit Jeromy Rech en Wei You, Universiteit van Noord -Carolina by Chapel Hill en Alex H. Balzer en Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: 17 Maart, Selverslae Fisiese Wetenskap

Opsomming: Deur halfdeursigtige organiese sonselle (ST-OSC's) by 'n kweekhuisstruktuur te voeg, kan gelyktydige plantverbouing en elektrisiteit opgewek word, wat die vraag na kweekhuisenergie verminder. Daar is egter 'n behoefte om die impak van sulke stelsels op plantegroei en binneklimaat vas te stel en om stelselafwykings te optimaliseer. In hierdie werk oorweeg ons plantgroei onder OSC's en stelselrelevante ontwerp. Eerstens evalueer ons die groei van rooi blaarslaai onder ST-OSC-filters en vergelyk die impak van drie verskillende OSC-aktiewe lae met 'n unieke transmissie. Ons vind geen beduidende verskille in die vars gewig en chlorofilinhoud van die blaarslaai wat onder hierdie OSC -filters verbou word nie. Boonop bied OSC's 'n geleentheid vir verdere lig- en termiese bestuur van die kweekhuis deur middel van toestelontwerp en optiese bedekkings. Die OSC's kan dus die aanleggroei, kragopwekking en termiese las van die kweekhuis beïnvloed, en hierdie ontwerpruimte word hersien en geïllustreer.


Studie vind dat plante goed sou groei in kweekhuise met sonselle

'N Onlangse studie toon dat blaarslaai in kweekhuise verbou kan word wat golflengtes van lig wat gebruik word om sonkrag op te wek, uitfilter, wat bewys dat dit moontlik is om deurskynende sonpanele in kweekhuise te gebruik om elektrisiteit op te wek.

"Ons was 'n bietjie verbaas-daar was geen werklike afname in plantgroei of gesondheid nie," sê Heike Sederoff, mede-ooreenstemmende skrywer van die studie en professor in plantbiologie aan die North Carolina State University. "Dit beteken dat die idee om deursigtige sonselle in kweekhuise te integreer, gedoen kan word."

Omdat plante nie al die golflengtes van lig vir fotosintese gebruik nie, het navorsers die idee ondersoek om halfdeursigtige organiese sonselle te skep wat hoofsaaklik golflengtes van lig absorbeer waarop plante nie staatmaak nie, en die sonselle in kweekhuise op te neem. Vroeër werk van NC  State het gefokus op hoeveel energie kweekhuise met sonkrag kan produseer. Afhangende van die ontwerp van die kweekhuis en waar dit geleë is, kan sonselle baie kweekhuise energie -neutraal maak - of selfs toelaat dat hulle meer krag opwek as wat hulle gebruik.

Maar tot nou toe was dit nie duidelik hoe hierdie halfdeursigtige sonpanele kweekgewasse kan beïnvloed nie.

Om die probleem aan te spreek, het navorsers gewasse van rooi blaarslaai (Lactuca sativa) vir 30 dae in kweekkamers - van saad tot volle rypheid. Die groeitoestande, van temperatuur en water tot kunsmis en CO2 konsentrasie, was almal konstant - behalwe vir lig.

'N Kontrolegroep blaarslaai is blootgestel aan die volle spektrum van wit lig. Die res van die blaarslaai is in drie eksperimentele groepe verdeel. Elkeen van hierdie groepe is aan lig blootgestel deur verskillende soorte filters wat golflengtes van lig absorbeer wat gelykstaande is aan wat verskillende soorte halfdeursigtige sonselle sou absorbeer.

"Die totale hoeveelheid lig wat op die filters ingeval het, was dieselfde, maar die kleursamestelling van die lig was vir elkeen van die eksperimentele groepe anders," sê Harald Ade, mede-ooreenstemmende skrywer van die studie en die Goodnight Innovation Distinguished Professor of Physics by NC  Staat.

"Ons het spesifiek die verhouding van blou lig tot rooi lig in al drie filters gemanipuleer om te sien hoe dit die groei van plante beïnvloed," sê Sederoff.

Om die effek van die verwydering van verskillende golflengtes van lig te bepaal, het die navorsers 'n magdom plantkenmerke beoordeel. Die navorsers het byvoorbeeld baie aandag gegee aan sigbare eienskappe wat belangrik is vir produsente, kruideniers en verbruikers, soos blaargetal, blaargrootte en hoeveel blaarslaai geweeg het. Maar hulle het ook merkers van plantgesondheid en voedingskwaliteit beoordeel, soos hoeveel CO2 die plante opgeneem het en die vlakke van verskillende antioksidante.

"Ons het nie net 'n betekenisvolle verskil tussen die kontrolegroep en die eksperimentele groepe gevind nie; ons het ook geen beduidende verskil tussen die verskillende filters gevind nie," sê Brendan O'Connor, mede-ooreenstemmende skrywer van die studie en 'n medeprofessor van meganiese en ruimtevaartingenieurswese by NC  State.

"Daar is ook komende werk wat in meer detail ingaan op die maniere waarop die oes van verskillende golflengtes die biologiese prosesse van blaarslaai, tamaties en ander gewasse beïnvloed," sê Sederoff.

"Dit is belowend vir die toekoms van kweekhuise met sonkrag," sê Ade. 'Om produsente te laat gebruik om hierdie tegnologie te gebruik, sal 'n moeilike argument wees as daar 'n verlies aan produktiwiteit is. Maar nou is dit 'n eenvoudige ekonomiese argument oor die vraag of die belegging in nuwe kweekhuistegnologie deur energieproduksie en besparing vergoed sal word.

"Op grond van die aantal mense wat my gekontak het oor kweekhuise op sonkrag toe ons vorige werk in hierdie ruimte gepubliseer het, is daar baie belangstelling van baie produsente," sê O'Connor. 'Ek dink dat die belangstelling net gaan toeneem. Ons het genoeg bewys-van-konsep-prototipes gesien om te weet dat hierdie tegnologie in beginsel haalbaar is; ons moet net sien hoe 'n onderneming die sprong neem en op skaal begin produseer. "

Die koerant, 'Balanseer gewasproduksie en energie -oes in organiese kweekhuise met sonkrag', verskyn in die joernaal Selverslae Fisiese Wetenskap. Mede-hoofskrywers van die koerant is NC  State Ph.D. studente Melodi Charles en Eshwar Ravishankar. Die koerant is mede-outeur van Yuan Xiong, 'n navorsingsassistent by NC   State Reece Henry en Ronald Booth, Ph. D.-studente aan NC  State Jennifer Swift, John Calero en Sam Cho, tegnici by NC  State Taesoo Kim, 'n navorsingswetenskaplike by NC   State Yunpeng Qin en Carr Hoi Yi Ho, postdoktorale navorsers by NC   State Franky So, Walter en Ida Freeman Uitstekende professor in materiaalwetenskap en ingenieurswese by NC   State Aram Amassian, 'n medeprofessor in materiaalwetenskap en ingenieurswese by NC   State Carole Saravitz, 'n navorsingsassistent professor in plantbiologie aan NC  State Jeromy Rech en Wei You van die Universiteit van Noord -Carolina in Chapel Hill en Alex H. Balzer en Natalie Stingelin van die Georgia Institute of Technology.

Die werk is uitgevoer met ondersteuning van die National Science Foundation onder toelaes 1639429 en 1905901 die Office of Naval Research, onder toelaes N00014-20-1-2183, N00014-17-1-2242 en N00014-17-1-2204 North Carolina State Universiteit en NextGen Nano Beperk.

Opmerking aan redakteurs: Die studie -opsomming volg.

'Balanseer gewasproduksie en oes van energie in organiese kweekhuise met sonkrag'

Skrywers: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff en Brendan T. O'Connor, Noord -Carolina Staatsuniversiteit Jeromy Rech en Wei You, Universiteit van Noord -Carolina by Chapel Hill en Alex H. Balzer en Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: 17 Maart, Selverslae Fisiese Wetenskap

Opsomming: Deur halfdeursigtige organiese sonselle (ST-OSC's) by 'n kweekhuisstruktuur te voeg, kan gelyktydige plantverbouing en elektrisiteit opgewek word, wat die vraag na kweekhuisenergie verminder. Daar is egter 'n behoefte om die impak van sulke stelsels op plantegroei en binneklimaat vas te stel en om stelselafwykings te optimaliseer. In hierdie werk oorweeg ons plantgroei onder OSC's en stelselrelevante ontwerp. Eerstens evalueer ons die groei van rooi blaarslaai onder ST-OSC-filters en vergelyk die impak van drie verskillende OSC-aktiewe lae met 'n unieke transmissie. Ons vind geen beduidende verskille in die vars gewig en chlorofilinhoud van die blaarslaai wat onder hierdie OSC -filters verbou word nie. Boonop bied OSC's 'n geleentheid vir verdere lig- en termiese bestuur van die kweekhuis deur middel van toestelontwerp en optiese bedekkings. Die OSC's kan dus die aanleggroei, kragopwekking en termiese las van die kweekhuis beïnvloed, en hierdie ontwerpruimte word hersien en geïllustreer.


Studie vind dat plante goed sou groei in kweekhuise met sonselle

'N Onlangse studie toon dat blaarslaai in kweekhuise verbou kan word wat golflengtes van lig wat gebruik word om sonkrag op te wek, uitfilter, wat bewys dat dit moontlik is om deurskynende sonpanele in kweekhuise te gebruik om elektrisiteit op te wek.

"Ons was 'n bietjie verbaas-daar was geen werklike afname in plantgroei of gesondheid nie," sê Heike Sederoff, mede-ooreenstemmende skrywer van die studie en professor in plantbiologie aan die North Carolina State University. 'Dit beteken dat die idee om deursigtige sonselle in kweekhuise te integreer, gedoen kan word.

Omdat plante nie al die golflengtes van lig vir fotosintese gebruik nie, het navorsers die idee ondersoek om halfdeursigtige organiese sonselle te skep wat hoofsaaklik golflengtes van lig absorbeer waarop plante nie staatmaak nie, en die sonselle in kweekhuise op te neem. Vroeër werk van NC  State het gefokus op hoeveel energie kweekhuise met sonkrag kan produseer. Afhangende van die ontwerp van die kweekhuis en waar dit geleë is, kan sonselle baie kweekhuise energie -neutraal maak - of selfs toelaat dat hulle meer krag opwek as wat hulle gebruik.

Maar tot nou toe was dit nie duidelik hoe hierdie halfdeursigtige sonpanele kweekgewasse kan beïnvloed nie.

Om die probleem aan te spreek, het navorsers gewasse van rooi blaarslaai (Lactuca sativa) vir 30 dae in kweekkamers - van saad tot volle volwassenheid. Die groeitoestande, van temperatuur en water tot kunsmis en CO2 konsentrasie, was almal konstant - behalwe vir lig.

'N Kontrolegroep blaarslaai is blootgestel aan die volle spektrum van wit lig. Die res van die blaarslaai is in drie eksperimentele groepe verdeel. Elkeen van hierdie groepe is aan lig blootgestel deur verskillende soorte filters wat golflengtes van lig absorbeer wat gelykstaande is aan wat verskillende soorte halfdeursigtige sonselle sou absorbeer.

"Die totale hoeveelheid lig wat op die filters ingeval het, was dieselfde, maar die kleursamestelling van die lig was vir elkeen van die eksperimentele groepe anders," sê Harald Ade, mede-ooreenstemmende skrywer van die studie en die Goodnight Innovation Distinguished Professor of Physics by NC  Staat.

"Ons het spesifiek die verhouding van blou lig tot rooi lig in al drie filters gemanipuleer om te sien hoe dit die groei van plante beïnvloed," sê Sederoff.

Om die effek van die verwydering van verskillende golflengtes van lig te bepaal, het die navorsers 'n magdom plantkenmerke beoordeel. Die navorsers het byvoorbeeld baie aandag gegee aan sigbare eienskappe wat belangrik is vir produsente, kruideniers en verbruikers, soos blaargetal, blaargrootte en hoeveel blaarslaai geweeg het. Maar hulle het ook merkers van plantgesondheid en voedingskwaliteit beoordeel, soos hoeveel CO2 die plante opgeneem het en die vlakke van verskillende antioksidante.

"Ons het nie net 'n betekenisvolle verskil tussen die kontrolegroep en die eksperimentele groepe gevind nie; ons het ook geen beduidende verskil tussen die verskillende filters gevind nie," sê Brendan O'Connor, mede-ooreenstemmende skrywer van die studie en 'n medeprofessor van meganiese en ruimtevaartingenieurswese by NC  State.

"Daar is ook komende werk wat in meer detail ingaan op die maniere waarop die oes van verskillende golflengtes die biologiese prosesse van blaarslaai, tamaties en ander gewasse beïnvloed," sê Sederoff.

"Dit is belowend vir die toekoms van kweekhuise met sonkrag," sê Ade. 'Om produsente te laat gebruik om hierdie tegnologie te gebruik, sal 'n moeilike argument wees as daar 'n verlies aan produktiwiteit is. Maar nou is dit 'n eenvoudige ekonomiese argument oor die vraag of die belegging in nuwe kweekhuistegnologie deur energieproduksie en besparing vergoed sal word.

"Op grond van die aantal mense wat my gekontak het oor kweekhuise op sonkrag toe ons vorige werk in hierdie ruimte gepubliseer het, is daar baie belangstelling van baie produsente," sê O'Connor. 'Ek dink dat die belangstelling net gaan toeneem. Ons het genoeg bewys-van-konsep-prototipes gesien om te weet dat hierdie tegnologie in beginsel haalbaar is; ons moet net sien hoe 'n onderneming die sprong neem en op skaal begin produseer. "

Die koerant, 'Balanseer gewasproduksie en energie -oes in organiese kweekhuise met sonkrag', verskyn in die joernaal Selverslae Fisiese Wetenskap. Mede-hoofskrywers van die koerant is NC  State Ph.D. studente Melodi Charles en Eshwar Ravishankar. Die koerant is mede-outeur van Yuan Xiong, 'n navorsingsassistent by NC   State Reece Henry en Ronald Booth, Ph. D.-studente aan NC  State Jennifer Swift, John Calero en Sam Cho, tegnici by NC  State Taesoo Kim, 'n navorsingswetenskaplike by NC   State Yunpeng Qin en Carr Hoi Yi Ho, postdoktorale navorsers by NC   State Franky So, Walter en Ida Freeman Uitstekende professor in materiaalwetenskap en ingenieurswese by NC   State Aram Amassian, 'n medeprofessor in materiaalwetenskap en ingenieurswese by NC   State Carole Saravitz, 'n navorsingsassistent professor in plantbiologie aan NC  State Jeromy Rech en Wei You van die Universiteit van Noord -Carolina in Chapel Hill en Alex H. Balzer en Natalie Stingelin van die Georgia Institute of Technology.

Die werk is uitgevoer met ondersteuning van die National Science Foundation onder toelaes 1639429 en 1905901 die Office of Naval Research, onder toelaes N00014-20-1-2183, N00014-17-1-2242 en N00014-17-1-2204 North Carolina State Universiteit en NextGen Nano Beperk.

Opmerking aan redakteurs: Die studie -opsomming volg.

'Balanseer gewasproduksie en oes van energie in organiese kweekhuise met sonkrag'

Skrywers: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff en Brendan T. O'Connor, Noord -Carolina Staatsuniversiteit Jeromy Rech en Wei You, Universiteit van Noord -Carolina by Chapel Hill en Alex H. Balzer en Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: 17 Maart, Selverslae Fisiese Wetenskap

Opsomming: Deur halfdeursigtige organiese sonselle (ST-OSC's) by 'n kweekhuisstruktuur te voeg, kan gelyktydige plantverbouing en elektrisiteit opgewek word, wat die vraag na kweekhuisenergie verminder. Daar is egter 'n behoefte om die impak van sulke stelsels op plantegroei en binneklimaat vas te stel en om stelselafwykings te optimaliseer. In hierdie werk oorweeg ons plantgroei onder OSC's en stelselrelevante ontwerp. Eerstens evalueer ons die groei van rooi blaarslaai onder ST-OSC-filters en vergelyk die impak van drie verskillende OSC-aktiewe lae met 'n unieke transmissie. Ons vind geen beduidende verskille in die vars gewig en chlorofilinhoud van die blaarslaai wat onder hierdie OSC -filters verbou word nie. Boonop bied OSC's 'n geleentheid vir verdere lig- en termiese bestuur van die kweekhuis deur middel van toestelontwerp en optiese bedekkings. Die OSC's kan dus die aanleggroei, kragopwekking en termiese las van die kweekhuis beïnvloed, en hierdie ontwerpruimte word hersien en geïllustreer.


Studie vind dat plante goed sou groei in kweekhuise met sonselle

'N Onlangse studie toon dat blaarslaai in kweekhuise verbou kan word wat golflengtes van lig wat gebruik word om sonkrag op te wek, uitfiltreer, wat bewys dat dit moontlik is om deurskynende sonpanele in kweekhuise te gebruik om elektrisiteit op te wek.

"Ons was 'n bietjie verbaas-daar was geen werklike afname in plantgroei of gesondheid nie," sê Heike Sederoff, mede-ooreenstemmende skrywer van die studie en professor in plantbiologie aan die North Carolina State University. 'Dit beteken dat die idee om deursigtige sonselle in kweekhuise te integreer, gedoen kan word.

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse crops.

To address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.

“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.”

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.”

The paper, “Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses,” appears in the journal Cell Reports Physical Science. Co-lead authors of the paper are NC State Ph.D. students Melodi Charles and Eshwar Ravishankar. The paper was co-authored by Yuan Xiong, a research assistant at NC State Reece Henry and Ronald Booth, Ph. D. students at NC State Jennifer Swift, John Calero and Sam Cho, technicians at NC State Taesoo Kim, a research scientist at NC State Yunpeng Qin and Carr Hoi Yi Ho, postdoctoral researchers at NC State Franky So, Walter and Ida Freeman Distinguished Professor of Materials Science and Engineering at NC State Aram Amassian, an associate professor of materials science and engineering at NC State Carole Saravitz, a research associate professor of plant biology at NC State Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin of the Georgia Institute of Technology.

The work was done with support from the National Science Foundation under grants 1639429 and 1905901 the Office of Naval Research, under grants N00014-20-1-2183, N00014-17-1-2242 and N00014-17-1-2204 North Carolina State University and NextGen Nano Limited.

Note to Editors: The study abstract follows.

“Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses”

Authors: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff and Brendan T. O’Connor, North Carolina State University Jeromy Rech and Wei You, University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: March 17, Cell Reports Physical Science

Opsomming: Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system relevant design. First, we evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus impact plant growth, power generation, and thermal load of the greenhouse, and this design trade-space is reviewed and exemplified.


Study Finds Plants Would Grow Well in Solar Cell Greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity.

“We were a little surprised – there was no real reduction in plant growth or health,” says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. “It means the idea of integrating transparent solar cells into greenhouses can be done.”

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse crops.

To address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.

“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.”

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.”

The paper, “Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses,” appears in the journal Cell Reports Physical Science. Co-lead authors of the paper are NC State Ph.D. students Melodi Charles and Eshwar Ravishankar. The paper was co-authored by Yuan Xiong, a research assistant at NC State Reece Henry and Ronald Booth, Ph. D. students at NC State Jennifer Swift, John Calero and Sam Cho, technicians at NC State Taesoo Kim, a research scientist at NC State Yunpeng Qin and Carr Hoi Yi Ho, postdoctoral researchers at NC State Franky So, Walter and Ida Freeman Distinguished Professor of Materials Science and Engineering at NC State Aram Amassian, an associate professor of materials science and engineering at NC State Carole Saravitz, a research associate professor of plant biology at NC State Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin of the Georgia Institute of Technology.

The work was done with support from the National Science Foundation under grants 1639429 and 1905901 the Office of Naval Research, under grants N00014-20-1-2183, N00014-17-1-2242 and N00014-17-1-2204 North Carolina State University and NextGen Nano Limited.

Note to Editors: The study abstract follows.

“Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses”

Authors: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff and Brendan T. O’Connor, North Carolina State University Jeromy Rech and Wei You, University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: March 17, Cell Reports Physical Science

Opsomming: Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system relevant design. First, we evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus impact plant growth, power generation, and thermal load of the greenhouse, and this design trade-space is reviewed and exemplified.


Study Finds Plants Would Grow Well in Solar Cell Greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity.

“We were a little surprised – there was no real reduction in plant growth or health,” says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. “It means the idea of integrating transparent solar cells into greenhouses can be done.”

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse crops.

To address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.

“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.”

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.”

The paper, “Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses,” appears in the journal Cell Reports Physical Science. Co-lead authors of the paper are NC State Ph.D. students Melodi Charles and Eshwar Ravishankar. The paper was co-authored by Yuan Xiong, a research assistant at NC State Reece Henry and Ronald Booth, Ph. D. students at NC State Jennifer Swift, John Calero and Sam Cho, technicians at NC State Taesoo Kim, a research scientist at NC State Yunpeng Qin and Carr Hoi Yi Ho, postdoctoral researchers at NC State Franky So, Walter and Ida Freeman Distinguished Professor of Materials Science and Engineering at NC State Aram Amassian, an associate professor of materials science and engineering at NC State Carole Saravitz, a research associate professor of plant biology at NC State Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin of the Georgia Institute of Technology.

The work was done with support from the National Science Foundation under grants 1639429 and 1905901 the Office of Naval Research, under grants N00014-20-1-2183, N00014-17-1-2242 and N00014-17-1-2204 North Carolina State University and NextGen Nano Limited.

Note to Editors: The study abstract follows.

“Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses”

Authors: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff and Brendan T. O’Connor, North Carolina State University Jeromy Rech and Wei You, University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: March 17, Cell Reports Physical Science

Opsomming: Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system relevant design. First, we evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus impact plant growth, power generation, and thermal load of the greenhouse, and this design trade-space is reviewed and exemplified.


Study Finds Plants Would Grow Well in Solar Cell Greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity.

“We were a little surprised – there was no real reduction in plant growth or health,” says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. “It means the idea of integrating transparent solar cells into greenhouses can be done.”

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse crops.

To address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.

“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.”

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.”

The paper, “Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses,” appears in the journal Cell Reports Physical Science. Co-lead authors of the paper are NC State Ph.D. students Melodi Charles and Eshwar Ravishankar. The paper was co-authored by Yuan Xiong, a research assistant at NC State Reece Henry and Ronald Booth, Ph. D. students at NC State Jennifer Swift, John Calero and Sam Cho, technicians at NC State Taesoo Kim, a research scientist at NC State Yunpeng Qin and Carr Hoi Yi Ho, postdoctoral researchers at NC State Franky So, Walter and Ida Freeman Distinguished Professor of Materials Science and Engineering at NC State Aram Amassian, an associate professor of materials science and engineering at NC State Carole Saravitz, a research associate professor of plant biology at NC State Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin of the Georgia Institute of Technology.

The work was done with support from the National Science Foundation under grants 1639429 and 1905901 the Office of Naval Research, under grants N00014-20-1-2183, N00014-17-1-2242 and N00014-17-1-2204 North Carolina State University and NextGen Nano Limited.

Note to Editors: The study abstract follows.

“Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses”

Authors: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff and Brendan T. O’Connor, North Carolina State University Jeromy Rech and Wei You, University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: March 17, Cell Reports Physical Science

Opsomming: Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system relevant design. First, we evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus impact plant growth, power generation, and thermal load of the greenhouse, and this design trade-space is reviewed and exemplified.


Study Finds Plants Would Grow Well in Solar Cell Greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity.

“We were a little surprised – there was no real reduction in plant growth or health,” says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. “It means the idea of integrating transparent solar cells into greenhouses can be done.”

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse crops.

To address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.

“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.”

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.”

The paper, “Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses,” appears in the journal Cell Reports Physical Science. Co-lead authors of the paper are NC State Ph.D. students Melodi Charles and Eshwar Ravishankar. The paper was co-authored by Yuan Xiong, a research assistant at NC State Reece Henry and Ronald Booth, Ph. D. students at NC State Jennifer Swift, John Calero and Sam Cho, technicians at NC State Taesoo Kim, a research scientist at NC State Yunpeng Qin and Carr Hoi Yi Ho, postdoctoral researchers at NC State Franky So, Walter and Ida Freeman Distinguished Professor of Materials Science and Engineering at NC State Aram Amassian, an associate professor of materials science and engineering at NC State Carole Saravitz, a research associate professor of plant biology at NC State Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin of the Georgia Institute of Technology.

The work was done with support from the National Science Foundation under grants 1639429 and 1905901 the Office of Naval Research, under grants N00014-20-1-2183, N00014-17-1-2242 and N00014-17-1-2204 North Carolina State University and NextGen Nano Limited.

Note to Editors: The study abstract follows.

“Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses”

Authors: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff and Brendan T. O’Connor, North Carolina State University Jeromy Rech and Wei You, University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: March 17, Cell Reports Physical Science

Opsomming: Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system relevant design. First, we evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus impact plant growth, power generation, and thermal load of the greenhouse, and this design trade-space is reviewed and exemplified.


Study Finds Plants Would Grow Well in Solar Cell Greenhouses

A recent study shows that lettuce can be grown in greenhouses that filter out wavelengths of light used to generate solar power, demonstrating the feasibility of using see-through solar panels in greenhouses to generate electricity.

“We were a little surprised – there was no real reduction in plant growth or health,” says Heike Sederoff, co-corresponding author of the study and a professor of plant biology at North Carolina State University. “It means the idea of integrating transparent solar cells into greenhouses can be done.”

Because plants do not use all of the wavelengths of light for photosynthesis, researchers have explored the idea of creating semi-transparent organic solar cells that primarily absorb wavelengths of light that plants don’t rely on, and incorporating those solar cells into greenhouses. Earlier work from NC State focused on how much energy solar-powered greenhouses could produce. Depending on the design of the greenhouse, and where it is located, solar cells could make many greenhouses energy neutral – or even allow them to generate more power than they use.

But, until now, it wasn’t clear how these semi-transparent solar panels might affect greenhouse crops.

To address the issue, researchers grew crops of red leaf lettuce (Lactuca sativa) in greenhouse chambers for 30 days – from seed to full maturity. The growing conditions, from temperature and water to fertilizer and CO2 concentration, were all constant – except for light.

A control group of lettuces was exposed to the full spectrum of white light. The rest of the lettuces were dived into three experimental groups. Each of those groups was exposed to light through different types of filters that absorbed wavelengths of light equivalent to what different types of semi-transparent solar cells would absorb.

“The total amount of light incident on the filters was the same, but the color composition of that light was different for each of the experimental groups,” says Harald Ade, co-corresponding author of the study and the Goodnight Innovation Distinguished Professor of Physics at NC State.

“Specifically, we manipulated the ratio of blue light to red light in all three filters to see how it affected plant growth,” Sederoff says.

To determine the effect of removing various wavelengths of light, the researchers assessed a host of plant characteristics. For example, the researchers paid close attention to visible characteristics that are important to growers, grocers and consumers, such as leaf number, leaf size, and how much the lettuces weighed. But they also assessed markers of plant health and nutritional quality, such as how much CO2 the plants absorbed and the levels of various antioxidants.

“Not only did we find no meaningful difference between the control group and the experimental groups, we also didn’t find any significant difference between the different filters,” says Brendan O’Connor, co-corresponding author of the study and an associate professor of mechanical and aerospace engineering at NC State.

“There is also forthcoming work that delves into greater detail about the ways in which harvesting various wavelengths of light affects biological processes for lettuces, tomatoes and other crops,” Sederoff says.

“This is promising for the future of solar-powered greenhouses,” Ade says. “Getting growers to use this technology would be a tough argument if there was a loss of productivity. But now it is a simple economic argument about whether the investment in new greenhouse technology would be offset by energy production and savings.”

“Based on the number of people who have contacted me about solar-powered greenhouses when we’ve published previous work in this space, there is a lot of interest from many growers,” O’Connor says. “I think that interest is only going to grow. We’ve seen enough proof-of-concept prototypes to know this technology is feasible in principle, we just need to see a company take the leap and begin producing to scale.”

The paper, “Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses,” appears in the journal Cell Reports Physical Science. Co-lead authors of the paper are NC State Ph.D. students Melodi Charles and Eshwar Ravishankar. The paper was co-authored by Yuan Xiong, a research assistant at NC State Reece Henry and Ronald Booth, Ph. D. students at NC State Jennifer Swift, John Calero and Sam Cho, technicians at NC State Taesoo Kim, a research scientist at NC State Yunpeng Qin and Carr Hoi Yi Ho, postdoctoral researchers at NC State Franky So, Walter and Ida Freeman Distinguished Professor of Materials Science and Engineering at NC State Aram Amassian, an associate professor of materials science and engineering at NC State Carole Saravitz, a research associate professor of plant biology at NC State Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin of the Georgia Institute of Technology.

The work was done with support from the National Science Foundation under grants 1639429 and 1905901 the Office of Naval Research, under grants N00014-20-1-2183, N00014-17-1-2242 and N00014-17-1-2204 North Carolina State University and NextGen Nano Limited.

Note to Editors: The study abstract follows.

“Balancing Crop Production and Energy Harvesting in Organic Solar Powered Greenhouses”

Authors: Eshwar Ravishankar, Melodi Charles, Yuan Xiong, Reece Henry, Jennifer Swift, John Calero, Sam Cho, Ronald E. Booth, Taesoo Kim, Yunpeng Qin, Carr Hoi Yi Ho, Franky So, Aram Amassian, Carole Saravitz, Harald Ade, Heike Sederoff and Brendan T. O’Connor, North Carolina State University Jeromy Rech and Wei You, University of North Carolina at Chapel Hill and Alex H. Balzer and Natalie Stingelin, Georgia Institute of Technology

Gepubliseer: March 17, Cell Reports Physical Science

Opsomming: Adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation thereby reducing the greenhouse energy demand. However, there is a need to establish the impact of such systems on plant growth and indoor climate and to optimize system tradeoffs. In this work, we consider plant growth under OSCs and system relevant design. First, we evaluate the growth of red leaf lettuce under ST-OSC filters and compare the impact of three different OSC active layers that have unique transmittance. We find no significant differences in the fresh weight and chlorophyll content of the lettuce grown under these OSC filters. In addition, OSCs provide an opportunity for further light and thermal management of the greenhouse through device design and optical coatings. The OSCs can thus impact plant growth, power generation, and thermal load of the greenhouse, and this design trade-space is reviewed and exemplified.


Kyk die video: Більше 10 тисяч буковинських першокласників, розпочали навчання в школах. (November 2021).