Nuwe resepte

Kan sampioene die volgende litiumionbattery wees?

Kan sampioene die volgende litiumionbattery wees?

Ingenieursstudente aan die Universiteit van Kalifornië-Riverside is op soek na die vervanging van batterye deur portabella-sampioene

Portabella -sampioene is poreus, wat beteken dat dit baie stoorplek kan skep as dit in batterye verander word.

Binnekort kan ons sampioene gebruik om litiumioonbatterye te vervang.

Navorsers by die Universiteit van Kalifornië-Riverside se Bourns College of Engineering het 'n verklaring op 29 September bekend gemaak waarin gesê word dat portabella-sampioene eintlik 'n eko-vriendelike manier is om litiumioonbatterye te vervang.

Die ingenieurs het hierdie spesifieke sampioenras ondersoek, omdat dit baie poreus is, sodat dit water en lug kan laat deurgaan. Hoe meer poreus 'n battery is, hoe meer berging skep dit. Hulle het ook die kaliumsoutkonsentrasie in die sampioene ondersoek en opgemerk dat hulle hoog is, wat beteken dat die bergingskapasiteit mettertyd sal toeneem.

'Met batterymateriaal soos hierdie', het Brennan Campbell, 'n UCR -gegradueerde in die materiaalwetenskap- en ingenieurswese -program, in 'n verklaring gesê, 'kan die toekomstige selfone na veelvuldige gebruik, eerder as 'n afname, 'n toename in werktyd veroorsaak as gevolg van oënskynlike aktivering van blinde porieë binne die koolstofargitekture namate die sel oor tyd laai en ontslaan.

Boonop is sampioene 'n goedkoper en meer volhoubare alternatief vir grafiet, wat die meeste batterye uitmaak.


Nuwe battery is 10 keer kragtiger as die nuutste, buigsaam en herlaaibaar

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke. Krediet: Universiteit van Kalifornië, San Diego

'N Span navorsers het 'n buigsame, herlaaibare silweroksied-sinkbattery ontwikkel met 'n vyf tot tien keer groter oppervlakte-energiedigtheid as die nuutste. Die battery is ook makliker om te vervaardig, terwyl die meeste buigsame batterye onder steriele toestande vervaardig moet word, en onder vakuum kan dit onder normale laboratoriumtoestande gedruk word. Die toestel kan gebruik word in buigsame, rekbare elektronika vir draagbare sowel as sagte robotika.

Die span, wat bestaan ​​uit navorsers aan die Universiteit van Kalifornië, San Diego en die in Kalifornië gebaseerde maatskappy ZPower, gee 'n uiteensetting van hul bevindings in die uitgawe van die tydskrif van 7 Desember 2020 Joule.

Ons batterye kan ontwerp word rondom elektronika, in plaas van elektronika wat rondom batterye ontwerp moet word, het Lu Yin, een van die mede-eerste skrywers van die papier en rsquos en 'n Ph.D. student in die navorsingsgroep van UC San Diego & rsquos nanoengineering professor Joseph Wang.

Die oppervlaktevermoë vir hierdie innoverende battery is 50 miljard ampère per vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlaktevermoë van 'n tipiese litiumionbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer.

& ldquo Hierdie soort oppervlakte -kapasiteit is nog nooit tevore verkry nie, & rdquo Yinsaid. En ons vervaardigingsmetode is bekostigbaar en skaalbaar. & rdquo

Die oppervlaktevermoë vir hierdie innoverende battery is by kamertemperatuur 50 milliamp / vierkante sentimeter, en dit is 10-20 keer groter as die oppervlaktevermoë van 'n tipiese litiumionbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer. Krediet: Universiteit van Kalifornië, San Diego

Die nuwe battery het 'n hoër kapasiteit as enige van die buigsame batterye wat tans op die mark beskikbaar is. Dit is omdat die battery 'n baie laer impedansie het en die weerstand van 'n elektriese stroombaan of toestel teen alternatiewe stroom kan beskadig. Hoe laer die impedansie, hoe beter is die batteryprestasie teen hoë stroomontlading.

Aangesien die mark van 5G en Internet of Things (IoT) vinnig groei, sal hierdie battery wat beter as kommersiële produkte presteer in hoëstroom draadlose toestelle waarskynlik 'n belangrike aanspraakmaker as die volgende generasie kragbron vir verbruikerselektronika is, en Jonathan Scharf het gesê dat die papier & rsquos mede- eerste skrywer en 'n Ph.D. kandidaat in die navorsingsgroep van UC San Diego en professor Ying Shirley Meng, professor in nano -ingenieurswese.

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke.

Die gedrukte batteryselle is vir meer as 80 siklusse herlaai, sonder dat daar groot tekens van kapasiteitsverlies was. Die selle bly ook funksioneel, ondanks herhaalde buiging en draai.

Ons kern fokus was om die batteryvermoë en die vervaardigingsproses te verbeter.

Om die battery te skep, het die navorsers 'n eie katode -ontwerp en chemie van ZPower gebruik. Wang en sy span het hul kundigheid in drukbare, rekbare sensors en rekbare batterye bygedra. Meng en haar kollegas het hul kundigheid verskaf in gevorderde karakterisering vir stelsels vir elektrochemiese energie en het elke herhaling van die prototipe van die battery gekenmerk totdat dit die hoogste prestasie bereik het.

Die resep vir beter prestasie

Die besonderse energiedigtheid van die battery en rsquos is te danke aan sy silweroksied-sink (AgO-Zn) chemie. Die meeste kommersiële buigsame batterye gebruik 'n Ag2O-Zn chemie. As gevolg hiervan het hulle gewoonlik 'n beperkte siklusleeftyd en 'n lae kapasiteit. Dit beperk die gebruik daarvan tot weggooibare elektronika met 'n lae krag.

AgO word tradisioneel as onstabiel beskou. Maar ZPower & rsquos AgO katodemateriaal maak staat op 'n eie loodoksiedlaag om AgO & rsquos se elektrochemiese stabiliteit en geleidingsvermoë te verbeter.

As 'n bykomende voordeel is die AgO-Zn-chemie verantwoordelik vir die lae impedansie van die battery. Die versamelaars met gedrukte stroom en batterye het ook uitstekende geleidingsvermoë, wat ook help om 'n laer impedansie te bereik.

Verbeterde vervaardiging

Maar AgO is nog nooit in 'n skermgedrukte battery gebruik nie, omdat dit baie oksidatief is en vinnig chemies afbreek. Deur verskillende oplosmiddels en bindmiddels te toets, kon navorsers in die Wang & rsquos -laboratorium aan UC San Diego 'n inkformulering vind wat AgO vir druk moontlik maak. As gevolg hiervan kan die battery binne enkele sekondes gedruk word nadat die ink voorberei is. Dit is droog en binne enkele minute gereed om te gebruik. Die battery kan ook in 'n rol-tot-rol-proses gedruk word, wat die spoed verhoog en die vervaardiging skaalbaar maak.

Die batterye word gedruk op 'n polimeerfilm wat chemies stabiel, elasties is en 'n hoë smeltpunt het (ongeveer 200 grade Celsius of 400 grade Fahrenheit) wat hitte verseël kan word. Huidige versamelaars, die sinkanode, die AgO-katode en die ooreenstemmende skeiers vorm elkeen 'n gestapelde skermgedrukte laag.

Die span werk reeds aan die volgende generasie van die battery, met die oog op goedkoper, vinniger laai -toestelle met nog laer impedansie wat gebruik sal word in 5G -toestelle en sagte robotika wat hoë krag benodig en aanpasbare en buigsame vormfaktore.


Nuwe battery is 10 keer meer kragtig as die nuutste, buigsaam en herlaaibaar

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke. Krediet: Universiteit van Kalifornië, San Diego

'N Span navorsers het 'n buigsame, herlaaibare silweroksied-sinkbattery ontwikkel met 'n vyf tot tien keer groter oppervlakte-energiedigtheid as die nuutste. Die battery is ook makliker om te vervaardig, terwyl die meeste buigsame batterye onder steriele toestande vervaardig moet word, en onder vakuum kan dit onder normale laboratoriumtoestande gedruk word. Die toestel kan gebruik word in buigsame, rekbare elektronika vir draagbare sowel as sagte robotika.

Die span, wat bestaan ​​uit navorsers aan die Universiteit van Kalifornië in San Diego en die in Kalifornië gebaseerde maatskappy ZPower, gee 'n uiteensetting van hul bevindings in die uitgawe van die tydskrif van 7 Desember 2020 Joule.

Ons batterye kan ontwerp word rondom elektronika, in plaas van elektronika wat rondom batterye ontwerp moet word. student in die navorsingsgroep van UC San Diego & rsquos nanoengineering professor Joseph Wang.

Die oppervlakte kapasiteit vir hierdie innoverende battery is 50 milliamp / vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlakte van 'n tipiese litiumioonbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer.

& ldquo Hierdie soort oppervlakte -kapasiteit is nog nooit tevore verkry nie, & rdquo Yinsaid. En ons vervaardigingsmetode is bekostigbaar en skaalbaar. & rdquo

Die oppervlaktevermoë vir hierdie innoverende battery is 50 miljard ampère per vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlaktevermoë van 'n tipiese litiumionbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer. Krediet: Universiteit van Kalifornië, San Diego

Die nuwe battery het 'n hoër kapasiteit as enige van die buigsame batterye wat tans op die mark beskikbaar is. Dit is omdat die battery 'n baie laer impedansie het en die weerstand van 'n elektriese stroombaan of toestel teen alternatiewe stroom kan beskadig. Hoe laer die impedansie, hoe beter is die batteryprestasie teen hoë stroomontlading.

Aangesien die mark vir 5G en Internet of Things (IoT) vinnig groei, sal hierdie battery wat beter as kommersiële produkte presteer in hoëstroom draadlose toestelle 'n belangrike aanspraakmaker wees as die volgende generasie kragbron vir verbruikerselektronika, en Jonathan Scharf het gesê dat die papier en rsquos mede- eerste skrywer en 'n Ph.D. kandidaat in die navorsingsgroep van UC San Diego en professor Ying Shirley Meng, professor in nano -ingenieurswese.

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke.

Die gedrukte batteryselle is vir meer as 80 siklusse herlaai, sonder dat daar groot tekens van kapasiteitsverlies was. Die selle bly ook funksioneel, ondanks herhaalde buiging en draai.

Ons kern fokus was om die batteryvermoë en die vervaardigingsproses te verbeter.

Om die battery te skep, het die navorsers 'n eie katode -ontwerp en chemie van ZPower gebruik. Wang en sy span het hul kundigheid in drukbare, rekbare sensors en rekbare batterye bygedra. Meng en haar kollegas het hul kundigheid verskaf in gevorderde karakterisering vir stelsels vir elektrochemiese energie en het elke herhaling van die prototipe van die battery gekenmerk totdat dit die hoogste prestasie bereik het.

Die resep vir beter prestasie

Die besonderse energiedigtheid van die battery en rsquos is te danke aan sy silweroksied-sink (AgO-Zn) chemie. Die meeste kommersiële buigsame batterye gebruik 'n Ag2O-Zn-chemie. As gevolg hiervan het hulle gewoonlik 'n beperkte siklusleeftyd en 'n lae kapasiteit. Dit beperk die gebruik daarvan tot weggooibare elektronika met 'n lae krag.

AgO word tradisioneel as onstabiel beskou. Maar ZPower & rsquos AgO katodemateriaal maak staat op 'n eie loodoksiedlaag om AgO & rsquos se elektrochemiese stabiliteit en geleidingsvermoë te verbeter.

As 'n bykomende voordeel is die AgO-Zn-chemie verantwoordelik vir die lae impedansie van die battery. Die versamelaars met gedrukte stroom en batterye het ook uitstekende geleidingsvermoë, wat ook help om 'n laer impedansie te bereik.

Verbeterde vervaardiging

Maar AgO is nog nooit in 'n skermgedrukte battery gebruik nie, omdat dit baie oksidatief is en vinnig chemies afbreek. Deur verskillende oplosmiddels en bindmiddels te toets, kon navorsers in die Wang & rsquos -laboratorium aan UC San Diego 'n inkformulering vind wat AgO vir druk moontlik maak. As gevolg hiervan kan die battery binne enkele sekondes gedruk word nadat die ink voorberei is. Dit is droog en binne enkele minute gereed om te gebruik. Die battery kan ook in 'n rol-tot-rol-proses gedruk word, wat die spoed verhoog en die vervaardiging skaalbaar maak.

Die batterye word gedruk op 'n polimeerfilm wat chemies stabiel, elasties is en 'n hoë smeltpunt het (ongeveer 200 grade Celsius of 400 grade Fahrenheit) wat hitte verseël kan word. Huidige versamelaars, die sinkanode, die AgO-katode en die ooreenstemmende skeiers vorm elkeen 'n gestapelde skermgedrukte laag.

Die span werk reeds aan die volgende generasie van die battery, met die oog op goedkoper, vinniger laai -toestelle met nog laer impedansie wat gebruik sal word in 5G -toestelle en sagte robotika wat hoë krag benodig en aanpasbare en buigsame vormfaktore.


Nuwe battery is 10 keer kragtiger as die nuutste, buigsaam en herlaaibaar

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke. Krediet: Universiteit van Kalifornië, San Diego

'N Span navorsers het 'n buigsame, herlaaibare silweroksied-sinkbattery ontwikkel met 'n vyf tot tien keer groter oppervlakte-energiedigtheid as die nuutste. Die battery is ook makliker om te vervaardig, terwyl die meeste buigsame batterye onder steriele toestande vervaardig moet word, en onder vakuum kan dit onder normale laboratoriumtoestande gedruk word. Die toestel kan gebruik word in buigsame, rekbare elektronika vir draagbare sowel as sagte robotika.

Die span, wat bestaan ​​uit navorsers aan die Universiteit van Kalifornië in San Diego en die in Kalifornië gebaseerde maatskappy ZPower, gee 'n uiteensetting van hul bevindings in die uitgawe van die tydskrif van 7 Desember 2020 Joule.

Ons batterye kan ontwerp word rondom elektronika, in plaas van elektronika wat rondom batterye ontwerp moet word. student in die navorsingsgroep van UC San Diego & rsquos nanoengineering professor Joseph Wang.

Die oppervlakte kapasiteit vir hierdie innoverende battery is 50 milliamp / vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlakte van 'n tipiese litiumioonbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer.

& ldquo Hierdie soort oppervlakte -kapasiteit is nog nooit tevore verkry nie, & rdquo Yinsaid. En ons vervaardigingsmetode is bekostigbaar en skaalbaar. & rdquo

Die oppervlakte kapasiteit vir hierdie innoverende battery is 50 milliamp / vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlakte van 'n tipiese litiumioonbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer. Krediet: Universiteit van Kalifornië, San Diego

Die nuwe battery het 'n hoër kapasiteit as enige van die buigsame batterye wat tans op die mark beskikbaar is. Dit is omdat die battery 'n baie laer impedansie het en die weerstand van 'n elektriese stroombaan of toestel teen alternatiewe stroom kan beskadig. Hoe laer die impedansie, hoe beter is die batterykrag teen hoë stroomontlading.

Aangesien die mark van 5G en Internet of Things (IoT) vinnig groei, sal hierdie battery wat beter as kommersiële produkte presteer in hoëstroom draadlose toestelle waarskynlik 'n belangrike aanspraakmaker as die volgende generasie kragbron vir verbruikerselektronika is, en Jonathan Scharf het gesê dat die papier & rsquos mede- eerste skrywer en 'n Ph.D. kandidaat in die navorsingsgroep van UC San Diego en professor Ying Shirley Meng, professor in nano -ingenieurswese.

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke.

Die gedrukte batteryselle is vir meer as 80 siklusse herlaai, sonder dat daar groot tekens van kapasiteitsverlies was. Die selle bly ook funksioneel, ondanks herhaalde buiging en draai.

Ons kern fokus was om die batteryvermoë en die vervaardigingsproses te verbeter.

Om die battery te skep, het die navorsers 'n eie katode -ontwerp en chemie van ZPower gebruik. Wang en sy span het hul kundigheid in drukbare, rekbare sensors en rekbare batterye bygedra. Meng en haar kollegas het hul kundigheid verskaf in gevorderde karakterisering vir stelsels vir elektrochemiese energie en het elke herhaling van die prototipe van die battery gekenmerk totdat dit die hoogste prestasie bereik het.

Die resep vir beter prestasie

Die besonderse energiedigtheid van die battery is te danke aan sy silweroksied-sink (AgO-Zn) chemie. Die meeste kommersiële buigsame batterye gebruik 'n Ag2O-Zn chemie. As gevolg hiervan het hulle gewoonlik 'n beperkte siklusleeftyd en 'n lae kapasiteit. Dit beperk die gebruik daarvan tot weggooibare elektronika met 'n lae krag.

AgO word tradisioneel as onstabiel beskou. Maar ZPower & rsquos AgO katodemateriaal maak staat op 'n eie loodoksiedlaag om AgO & rsquos se elektrochemiese stabiliteit en geleidingsvermoë te verbeter.

As 'n bykomende voordeel is die AgO-Zn-chemie verantwoordelik vir die lae impedansie van die battery. Die versamelaars met gedrukte stroom en batterye het ook uitstekende geleidingsvermoë, wat ook help om 'n laer impedansie te bereik.

Verbeterde vervaardiging

Maar AgO is nog nooit in 'n skermgedrukte battery gebruik nie, omdat dit baie oksidatief is en vinnig chemies afbreek. Deur verskillende oplosmiddels en bindmiddels te toets, kon navorsers in die Wang & rsquos -laboratorium aan UC San Diego 'n inkformulering vind wat AgO vir druk moontlik maak. As gevolg hiervan kan die battery binne enkele sekondes gedruk word nadat die ink voorberei is. Dit is droog en binne enkele minute gereed om te gebruik. Die battery kan ook in 'n rol-tot-rol-proses gedruk word, wat die spoed verhoog en die vervaardiging skaalbaar maak.

Die batterye word gedruk op 'n polimeerfilm wat chemies stabiel, elasties is en 'n hoë smeltpunt het (ongeveer 200 grade Celsius of 400 grade Fahrenheit) wat hitte verseël kan word. Huidige versamelaars, die sinkanode, die AgO-katode en die ooreenstemmende skeiers vorm elkeen 'n gestapelde skermgedrukte laag.

Die span werk reeds aan die volgende generasie van die battery, met die oog op goedkoper, vinniger laai -toestelle met nog laer impedansie wat gebruik sal word in 5G -toestelle en sagte robotika wat hoë krag benodig en aanpasbare en buigsame vormfaktore.


Nuwe battery is 10 keer meer kragtig as die nuutste, buigsaam en herlaaibaar

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke. Krediet: Universiteit van Kalifornië, San Diego

'N Span navorsers het 'n buigsame, herlaaibare silweroksied-sinkbattery ontwikkel met 'n vyf tot tien keer groter oppervlakte-energiedigtheid as die nuutste. Die battery is ook makliker om te vervaardig, terwyl die meeste buigsame batterye in steriele toestande vervaardig moet word, en onder vakuum kan dit onder normale laboratoriumtoestande gedruk word. Die toestel kan gebruik word in buigsame, rekbare elektronika vir draagbare sowel as sagte robotika.

Die span, wat bestaan ​​uit navorsers aan die Universiteit van Kalifornië in San Diego en die in Kalifornië gebaseerde maatskappy ZPower, gee 'n uiteensetting van hul bevindings in die uitgawe van die tydskrif van 7 Desember 2020 Joule.

Ons batterye kan ontwerp word rondom elektronika, in plaas van elektronika wat rondom batterye ontwerp moet word, het Lu Yin, een van die mede-eerste skrywers van die papier en rsquos en 'n Ph.D. student in die navorsingsgroep van UC San Diego & rsquos nanoengineering Professor Joseph Wang.

Die oppervlaktevermoë vir hierdie innoverende battery is 50 miljard ampère per vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlaktevermoë van 'n tipiese litiumionbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer.

& ldquo Hierdie soort oppervlakte -kapasiteit is nog nooit tevore verkry nie, & rdquo Yinsaid. En ons vervaardigingsmetode is bekostigbaar en skaalbaar. & rdquo

Die oppervlakte kapasiteit vir hierdie innoverende battery is 50 milliamp / vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlakte van 'n tipiese litiumioonbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer. Krediet: Universiteit van Kalifornië, San Diego

Die nuwe battery het 'n hoër kapasiteit as enige van die buigsame batterye wat tans op die mark beskikbaar is. Dit is omdat die battery 'n baie laer impedansie het en die weerstand van 'n elektriese stroombaan of toestel teen alternatiewe stroom kan beskadig. Hoe laer die impedansie, hoe beter is die batteryprestasie teen hoë stroomontlading.

Aangesien die mark van 5G en Internet of Things (IoT) vinnig groei, sal hierdie battery wat beter as kommersiële produkte presteer in hoëstroom draadlose toestelle waarskynlik 'n belangrike aanspraakmaker as die volgende generasie kragbron vir verbruikerselektronika is, en Jonathan Scharf het gesê dat die papier & rsquos mede- eerste skrywer en 'n Ph.D. kandidaat in die navorsingsgroep van UC San Diego en professor Ying Shirley Meng, professor in nano -ingenieurswese.

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke.

Die gedrukte batteryselle is vir meer as 80 siklusse herlaai, sonder dat daar groot tekens van kapasiteitsverlies was. Die selle bly ook funksioneel, ondanks herhaalde buiging en draai.

Ons kern fokus was om die batteryvermoë en die vervaardigingsproses te verbeter.

Om die battery te skep, het die navorsers 'n eie katode -ontwerp en chemie van ZPower gebruik. Wang en sy span het hul kundigheid in drukbare, rekbare sensors en rekbare batterye bygedra. Meng en haar kollegas het hul kundigheid verskaf in gevorderde karakterisering vir stelsels vir elektrochemiese energie en het elke herhaling van die prototipe van die battery gekenmerk totdat dit die hoogste prestasie bereik het.

Die resep vir beter prestasie

Die besonderse energiedigtheid van die battery en rsquos is te danke aan sy silweroksied-sink (AgO-Zn) chemie. Die meeste kommersiële buigsame batterye gebruik 'n Ag2O-Zn chemie. As gevolg hiervan het hulle gewoonlik 'n beperkte siklusleeftyd en 'n lae kapasiteit. Dit beperk die gebruik daarvan tot weggooibare elektronika met 'n lae krag.

AgO word tradisioneel as onstabiel beskou. Maar ZPower & rsquos AgO katodemateriaal maak staat op 'n eie loodoksiedlaag om AgO & rsquos se elektrochemiese stabiliteit en geleidingsvermoë te verbeter.

As 'n bykomende voordeel is die AgO-Zn-chemie verantwoordelik vir die lae impedansie van die battery. Die versamelaars met gedrukte stroom en batterye het ook uitstekende geleidingsvermoë, wat ook help om 'n laer impedansie te bereik.

Verbeterde vervaardiging

Maar AgO is nog nooit in 'n skermgedrukte battery gebruik nie, omdat dit baie oksidatief is en vinnig chemies afbreek. Deur verskillende oplosmiddels en bindmiddels te toets, kon navorsers in die Wang & rsquos -laboratorium aan UC San Diego 'n inkformulering vind wat AgO vir druk moontlik maak. As gevolg hiervan kan die battery binne enkele sekondes gedruk word nadat die ink voorberei is. Dit is binne enkele minute droog en gereed om te gebruik. Die battery kan ook in 'n rol-tot-rol-proses gedruk word, wat die spoed verhoog en die vervaardiging skaalbaar maak.

Die batterye word gedruk op 'n polimeerfilm wat chemies stabiel, elasties is en 'n hoë smeltpunt het (ongeveer 200 grade Celsius of 400 grade Fahrenheit) wat hitte verseël kan word. Huidige versamelaars, die sinkanode, die AgO-katode en die ooreenstemmende skeiers vorm elkeen 'n gestapelde skermgedrukte laag.

Die span werk reeds aan die volgende generasie van die battery, met die oog op goedkoper, vinniger laai -toestelle met nog laer impedansie wat gebruik sal word in 5G -toestelle en sagte robotika wat hoë krag benodig en aanpasbare en buigsame vormfaktore.


Nuwe battery is 10 keer meer kragtig as die nuutste, buigsaam en herlaaibaar

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke. Krediet: Universiteit van Kalifornië, San Diego

'N Span navorsers het 'n buigsame, herlaaibare silweroksied-sinkbattery ontwikkel met 'n vyf tot tien keer groter oppervlakte-energiedigtheid as die nuutste. Die battery is ook makliker om te vervaardig, terwyl die meeste buigsame batterye onder steriele toestande vervaardig moet word, en onder vakuum kan dit onder normale laboratoriumtoestande gedruk word. Die toestel kan gebruik word in buigsame, rekbare elektronika vir draagbare sowel as sagte robotika.

Die span, wat bestaan ​​uit navorsers aan die Universiteit van Kalifornië in San Diego en die in Kalifornië gebaseerde maatskappy ZPower, gee 'n uiteensetting van hul bevindings in die uitgawe van die tydskrif van 7 Desember 2020 Joule.

Ons batterye kan ontwerp word rondom elektronika, in plaas van elektronika wat rondom batterye ontwerp moet word. student in die navorsingsgroep van UC San Diego & rsquos nanoengineering professor Joseph Wang.

Die oppervlakte kapasiteit vir hierdie innoverende battery is 50 milliamp / vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlakte van 'n tipiese litiumioonbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer.

& ldquo Hierdie soort oppervlakte -kapasiteit is nog nooit tevore verkry nie, & rdquo Yinsaid. En ons vervaardigingsmetode is bekostigbaar en skaalbaar. & rdquo

Die oppervlakte kapasiteit vir hierdie innoverende battery is 50 milliamp / vierkante sentimeter by kamertemperatuur, en dit is 10-20 keer groter as die oppervlakte van 'n tipiese litiumioonbattery. Vir dieselfde oppervlak kan die battery wat in Joule beskryf word, 5 tot 10 keer meer krag lewer. Krediet: Universiteit van Kalifornië, San Diego

Die nuwe battery het 'n hoër kapasiteit as enige van die buigsame batterye wat tans op die mark beskikbaar is. Dit is omdat die battery 'n baie laer impedansie het en die weerstand van 'n elektriese stroombaan of toestel teen alternatiewe stroom kan beskadig. Hoe laer die impedansie, hoe beter is die batteryprestasie teen hoë stroomontlading.

Aangesien die mark van 5G en Internet of Things (IoT) vinnig groei, sal hierdie battery wat beter as kommersiële produkte presteer in hoëstroom draadlose toestelle waarskynlik 'n belangrike aanspraakmaker as die volgende generasie kragbron vir verbruikerselektronika is, en Jonathan Scharf het gesê dat die papier & rsquos mede- eerste skrywer en 'n Ph.D. kandidaat in die navorsingsgroep van UC San Diego en professor Ying Shirley Meng, professor in nano -ingenieurswese.

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke.

Die gedrukte batteryselle is vir meer as 80 siklusse herlaai, sonder dat daar groot tekens van kapasiteitsverlies was. Die selle bly ook funksioneel, ondanks herhaalde buiging en draai.

Ons kern fokus was om die batteryvermoë en die vervaardigingsproses te verbeter, sê Ying Shirley Meng, direkteur van die UC San Diego Institute for Materials Discovery and Design en een van die ooreenstemmende skrywers van papier en rsquos.

Om die battery te skep, het die navorsers 'n eie katode -ontwerp en chemie van ZPower gebruik. Wang en sy span het hul kundigheid in drukbare, rekbare sensors en rekbare batterye bygedra. Meng en haar kollegas het hul kundigheid verskaf in gevorderde karakterisering vir stelsels vir elektrochemiese energie en het elke herhaling van die prototipe van die battery gekenmerk totdat dit die hoogste prestasie bereik het.

Die resep vir beter prestasie

Die besonderse energiedigtheid van die battery en rsquos is te danke aan sy silweroksied-sink (AgO-Zn) chemie. Die meeste kommersiële buigsame batterye gebruik 'n Ag2O-Zn-chemie. As gevolg hiervan het hulle gewoonlik 'n beperkte siklusleeftyd en 'n lae kapasiteit. Dit beperk die gebruik daarvan tot weggooibare elektronika met 'n lae krag.

AgO word tradisioneel as onstabiel beskou. Maar ZPower & rsquos AgO katodemateriaal maak staat op 'n eie loodoksiedlaag om AgO & rsquos se elektrochemiese stabiliteit en geleidingsvermoë te verbeter.

As 'n bykomende voordeel is die AgO-Zn-chemie verantwoordelik vir die lae impedansie van die battery. Die versamelaars met gedrukte stroom en batterye het ook uitstekende geleidingsvermoë, wat ook help om 'n laer impedansie te bereik.

Verbeterde vervaardiging

Maar AgO is nog nooit in 'n skermgedrukte battery gebruik nie, omdat dit baie oksidatief is en vinnig chemies afbreek. Deur verskillende oplosmiddels en bindmiddels te toets, kon navorsers in die Wang & rsquos -laboratorium aan UC San Diego 'n inkformulering vind wat AgO lewensvatbaar maak vir drukwerk. As gevolg hiervan kan die battery binne enkele sekondes gedruk word nadat die ink voorberei is. Dit is binne enkele minute droog en gereed om te gebruik. Die battery kan ook in 'n rol-tot-rol-proses gedruk word, wat die spoed verhoog en die vervaardiging skaalbaar maak.

Die batterye word gedruk op 'n polimeerfilm wat chemies stabiel, elasties is en 'n hoë smeltpunt het (ongeveer 200 grade Celsius of 400 grade Fahrenheit) wat hitte verseël kan word. Huidige versamelaars, die sinkanode, die AgO-katode en die ooreenstemmende skeiers vorm elkeen 'n gestapelde skermgedrukte laag.

Die span werk reeds aan die volgende generasie van die battery, met die oog op goedkoper, vinniger laai -toestelle met nog laer impedansie wat gebruik sal word in 5G -toestelle en sagte robotika wat hoë krag benodig en aanpasbare en buigsame vormfaktore.


Nuwe battery is 10 keer kragtiger as die nuutste, buigsaam en herlaaibaar

Die batterye het 'n buigsame skermstelsel met 'n mikrobeheerder en Bluetooth -modules suksesvol aangedryf. Ook hier het die battery beter gevaar as in die handel beskikbare Li -muntstukke. Krediet: Universiteit van Kalifornië, San Diego

A team of researchers has developed a flexible, rechargeable silver oxide-zinc battery with a five to 10 times greater areal energy density than state of the art. The battery also is easier to manufacture while most flexible batteries need to be manufactured in sterile conditions, under vacuum, this one can be screen printed in normal lab conditions. The device can be used in flexible, stretchable electronics for wearables as well as soft robotics.

The team, made up of researchers at the University of California San Diego and California-based company ZPower, details their findings in the December 7, 2020, issue of the journal Joule.

&ldquoOur batteries can be designed around electronics, instead of electronics needed to be designed around batteries,&rdquo said Lu Yin, one of the paper&rsquos co-first authors and a Ph.D. student in the research group of UC San Diego&rsquos nanoengineering Professor Joseph Wang.

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power.

&ldquoThis kind of areal capacity has never been obtained before,&rdquo Yinsaid. &ldquoAnd our manufacturing method is affordable and scalable.&rdquo

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power. Credit: University of California San Diego

The new battery has higher capacity than any of the flexible batteries currently available on the market. That&rsquos because the battery has a much lower impedance &mdash the resistance of an electric circuit or device to alternative current. The lower the impedance, the better the battery performance against high current discharge.

&ldquoAs the 5G and Internet of Things (IoT) market grows rapidly, this battery that outperforms commercial products in high current wireless devices will likely be a main contender as the next-generation power source for consumer electronics,&rdquo said Jonathan Scharf the paper&rsquos co-first author and a Ph.D. candidate in the research group of UC San Diego&rsquos nanoengineering Professor Ying Shirley Meng.

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells.

The printed battery cells were recharged for more than 80 cycles, without showing any major signs of capacity loss. The cells also remained functional in spite of repeated bending and twisting.

&ldquoOur core focus was to improve both battery performance and the manufacturing process,&rdquo said Ying Shirley Meng, director of the UC San Diego Institute for Materials Discovery and Design and one of the paper&rsquos corresponding authors.

To create the battery, the researchers used a proprietary cathode design and chemistry from ZPower. Wang and his team contributed their expertise in printable, stretchable sensors and stretchable batteries. Meng and her colleagues provided their expertise in advanced characterization for electrochemical energy storage systems and characterized each iteration of the battery prototype until it reached peak performance.

The recipe to better performance

The battery&rsquos exceptional energy density is due to its silver oxide-zinc, (AgO-Zn)chemistry. Most commercial flexible batteries use a Ag2O-Zn chemistry. As a result, they usually have limited cycle life and have low capacity. This limits their use to low-power, disposable electronics.

AgO is traditionally considered unstable. But ZPower&rsquos AgO cathode material relies on a proprietary lead oxide coating to improve AgO&rsquos electrochemical stability and conductivity.

As an added benefit, the AgO-Zn chemistry is responsible for the battery&rsquos low impedance. The battery&rsquos printed current collectors also have excellent conductivity, which also helps achieve lower impedance.

Improved manufacturing

But AgO had never been used in a screen-printed battery before, because it is highly oxidative and chemically degrades quickly. By testing various solvents and binders, researchers in Wang&rsquos lab at UC San Diego were able to find an ink formulation that makes AgO viable for printing. As a result, the battery can be printed in only a few seconds once the inks are prepared. It is dry and ready to use in just minutes. The battery could also be printed in a roll-to-roll process, which would increase the speed and make manufacturing scalable.

The batteries are printed onto a polymer film that is chemically stable, elastic, and has a high melting point (about 200 degrees C or 400 degrees Fahrenheit ) that can be heat sealed. Current collectors, the zinc anode, the AgO cathode and their corresponding separators each constitute a stacked screen-printed layer.

The team is already at work on the next generation of the battery, aiming for cheaper, faster charging devices with even lower impedance that would be used in 5G devices and soft robotics that require high power and customizable and flexible form factors.


New Battery Is 10 Times More Powerful Than State of the Art, Flexible and Rechargeable

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells. Credit: University of California San Diego

A team of researchers has developed a flexible, rechargeable silver oxide-zinc battery with a five to 10 times greater areal energy density than state of the art. The battery also is easier to manufacture while most flexible batteries need to be manufactured in sterile conditions, under vacuum, this one can be screen printed in normal lab conditions. The device can be used in flexible, stretchable electronics for wearables as well as soft robotics.

The team, made up of researchers at the University of California San Diego and California-based company ZPower, details their findings in the December 7, 2020, issue of the journal Joule.

&ldquoOur batteries can be designed around electronics, instead of electronics needed to be designed around batteries,&rdquo said Lu Yin, one of the paper&rsquos co-first authors and a Ph.D. student in the research group of UC San Diego&rsquos nanoengineering Professor Joseph Wang.

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power.

&ldquoThis kind of areal capacity has never been obtained before,&rdquo Yinsaid. &ldquoAnd our manufacturing method is affordable and scalable.&rdquo

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power. Credit: University of California San Diego

The new battery has higher capacity than any of the flexible batteries currently available on the market. That&rsquos because the battery has a much lower impedance &mdash the resistance of an electric circuit or device to alternative current. The lower the impedance, the better the battery performance against high current discharge.

&ldquoAs the 5G and Internet of Things (IoT) market grows rapidly, this battery that outperforms commercial products in high current wireless devices will likely be a main contender as the next-generation power source for consumer electronics,&rdquo said Jonathan Scharf the paper&rsquos co-first author and a Ph.D. candidate in the research group of UC San Diego&rsquos nanoengineering Professor Ying Shirley Meng.

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells.

The printed battery cells were recharged for more than 80 cycles, without showing any major signs of capacity loss. The cells also remained functional in spite of repeated bending and twisting.

&ldquoOur core focus was to improve both battery performance and the manufacturing process,&rdquo said Ying Shirley Meng, director of the UC San Diego Institute for Materials Discovery and Design and one of the paper&rsquos corresponding authors.

To create the battery, the researchers used a proprietary cathode design and chemistry from ZPower. Wang and his team contributed their expertise in printable, stretchable sensors and stretchable batteries. Meng and her colleagues provided their expertise in advanced characterization for electrochemical energy storage systems and characterized each iteration of the battery prototype until it reached peak performance.

The recipe to better performance

The battery&rsquos exceptional energy density is due to its silver oxide-zinc, (AgO-Zn)chemistry. Most commercial flexible batteries use a Ag2O-Zn chemistry. As a result, they usually have limited cycle life and have low capacity. This limits their use to low-power, disposable electronics.

AgO is traditionally considered unstable. But ZPower&rsquos AgO cathode material relies on a proprietary lead oxide coating to improve AgO&rsquos electrochemical stability and conductivity.

As an added benefit, the AgO-Zn chemistry is responsible for the battery&rsquos low impedance. The battery&rsquos printed current collectors also have excellent conductivity, which also helps achieve lower impedance.

Improved manufacturing

But AgO had never been used in a screen-printed battery before, because it is highly oxidative and chemically degrades quickly. By testing various solvents and binders, researchers in Wang&rsquos lab at UC San Diego were able to find an ink formulation that makes AgO viable for printing. As a result, the battery can be printed in only a few seconds once the inks are prepared. It is dry and ready to use in just minutes. The battery could also be printed in a roll-to-roll process, which would increase the speed and make manufacturing scalable.

The batteries are printed onto a polymer film that is chemically stable, elastic, and has a high melting point (about 200 degrees C or 400 degrees Fahrenheit ) that can be heat sealed. Current collectors, the zinc anode, the AgO cathode and their corresponding separators each constitute a stacked screen-printed layer.

The team is already at work on the next generation of the battery, aiming for cheaper, faster charging devices with even lower impedance that would be used in 5G devices and soft robotics that require high power and customizable and flexible form factors.


New Battery Is 10 Times More Powerful Than State of the Art, Flexible and Rechargeable

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells. Credit: University of California San Diego

A team of researchers has developed a flexible, rechargeable silver oxide-zinc battery with a five to 10 times greater areal energy density than state of the art. The battery also is easier to manufacture while most flexible batteries need to be manufactured in sterile conditions, under vacuum, this one can be screen printed in normal lab conditions. The device can be used in flexible, stretchable electronics for wearables as well as soft robotics.

The team, made up of researchers at the University of California San Diego and California-based company ZPower, details their findings in the December 7, 2020, issue of the journal Joule.

&ldquoOur batteries can be designed around electronics, instead of electronics needed to be designed around batteries,&rdquo said Lu Yin, one of the paper&rsquos co-first authors and a Ph.D. student in the research group of UC San Diego&rsquos nanoengineering Professor Joseph Wang.

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power.

&ldquoThis kind of areal capacity has never been obtained before,&rdquo Yinsaid. &ldquoAnd our manufacturing method is affordable and scalable.&rdquo

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power. Credit: University of California San Diego

The new battery has higher capacity than any of the flexible batteries currently available on the market. That&rsquos because the battery has a much lower impedance &mdash the resistance of an electric circuit or device to alternative current. The lower the impedance, the better the battery performance against high current discharge.

&ldquoAs the 5G and Internet of Things (IoT) market grows rapidly, this battery that outperforms commercial products in high current wireless devices will likely be a main contender as the next-generation power source for consumer electronics,&rdquo said Jonathan Scharf the paper&rsquos co-first author and a Ph.D. candidate in the research group of UC San Diego&rsquos nanoengineering Professor Ying Shirley Meng.

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells.

The printed battery cells were recharged for more than 80 cycles, without showing any major signs of capacity loss. The cells also remained functional in spite of repeated bending and twisting.

&ldquoOur core focus was to improve both battery performance and the manufacturing process,&rdquo said Ying Shirley Meng, director of the UC San Diego Institute for Materials Discovery and Design and one of the paper&rsquos corresponding authors.

To create the battery, the researchers used a proprietary cathode design and chemistry from ZPower. Wang and his team contributed their expertise in printable, stretchable sensors and stretchable batteries. Meng and her colleagues provided their expertise in advanced characterization for electrochemical energy storage systems and characterized each iteration of the battery prototype until it reached peak performance.

The recipe to better performance

The battery&rsquos exceptional energy density is due to its silver oxide-zinc, (AgO-Zn)chemistry. Most commercial flexible batteries use a Ag2O-Zn chemistry. As a result, they usually have limited cycle life and have low capacity. This limits their use to low-power, disposable electronics.

AgO is traditionally considered unstable. But ZPower&rsquos AgO cathode material relies on a proprietary lead oxide coating to improve AgO&rsquos electrochemical stability and conductivity.

As an added benefit, the AgO-Zn chemistry is responsible for the battery&rsquos low impedance. The battery&rsquos printed current collectors also have excellent conductivity, which also helps achieve lower impedance.

Improved manufacturing

But AgO had never been used in a screen-printed battery before, because it is highly oxidative and chemically degrades quickly. By testing various solvents and binders, researchers in Wang&rsquos lab at UC San Diego were able to find an ink formulation that makes AgO viable for printing. As a result, the battery can be printed in only a few seconds once the inks are prepared. It is dry and ready to use in just minutes. The battery could also be printed in a roll-to-roll process, which would increase the speed and make manufacturing scalable.

The batteries are printed onto a polymer film that is chemically stable, elastic, and has a high melting point (about 200 degrees C or 400 degrees Fahrenheit ) that can be heat sealed. Current collectors, the zinc anode, the AgO cathode and their corresponding separators each constitute a stacked screen-printed layer.

The team is already at work on the next generation of the battery, aiming for cheaper, faster charging devices with even lower impedance that would be used in 5G devices and soft robotics that require high power and customizable and flexible form factors.


New Battery Is 10 Times More Powerful Than State of the Art, Flexible and Rechargeable

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells. Credit: University of California San Diego

A team of researchers has developed a flexible, rechargeable silver oxide-zinc battery with a five to 10 times greater areal energy density than state of the art. The battery also is easier to manufacture while most flexible batteries need to be manufactured in sterile conditions, under vacuum, this one can be screen printed in normal lab conditions. The device can be used in flexible, stretchable electronics for wearables as well as soft robotics.

The team, made up of researchers at the University of California San Diego and California-based company ZPower, details their findings in the December 7, 2020, issue of the journal Joule.

&ldquoOur batteries can be designed around electronics, instead of electronics needed to be designed around batteries,&rdquo said Lu Yin, one of the paper&rsquos co-first authors and a Ph.D. student in the research group of UC San Diego&rsquos nanoengineering Professor Joseph Wang.

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power.

&ldquoThis kind of areal capacity has never been obtained before,&rdquo Yinsaid. &ldquoAnd our manufacturing method is affordable and scalable.&rdquo

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power. Credit: University of California San Diego

The new battery has higher capacity than any of the flexible batteries currently available on the market. That&rsquos because the battery has a much lower impedance &mdash the resistance of an electric circuit or device to alternative current. The lower the impedance, the better the battery performance against high current discharge.

&ldquoAs the 5G and Internet of Things (IoT) market grows rapidly, this battery that outperforms commercial products in high current wireless devices will likely be a main contender as the next-generation power source for consumer electronics,&rdquo said Jonathan Scharf the paper&rsquos co-first author and a Ph.D. candidate in the research group of UC San Diego&rsquos nanoengineering Professor Ying Shirley Meng.

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells.

The printed battery cells were recharged for more than 80 cycles, without showing any major signs of capacity loss. The cells also remained functional in spite of repeated bending and twisting.

&ldquoOur core focus was to improve both battery performance and the manufacturing process,&rdquo said Ying Shirley Meng, director of the UC San Diego Institute for Materials Discovery and Design and one of the paper&rsquos corresponding authors.

To create the battery, the researchers used a proprietary cathode design and chemistry from ZPower. Wang and his team contributed their expertise in printable, stretchable sensors and stretchable batteries. Meng and her colleagues provided their expertise in advanced characterization for electrochemical energy storage systems and characterized each iteration of the battery prototype until it reached peak performance.

The recipe to better performance

The battery&rsquos exceptional energy density is due to its silver oxide-zinc, (AgO-Zn)chemistry. Most commercial flexible batteries use a Ag2O-Zn chemistry. As a result, they usually have limited cycle life and have low capacity. This limits their use to low-power, disposable electronics.

AgO is traditionally considered unstable. But ZPower&rsquos AgO cathode material relies on a proprietary lead oxide coating to improve AgO&rsquos electrochemical stability and conductivity.

As an added benefit, the AgO-Zn chemistry is responsible for the battery&rsquos low impedance. The battery&rsquos printed current collectors also have excellent conductivity, which also helps achieve lower impedance.

Improved manufacturing

But AgO had never been used in a screen-printed battery before, because it is highly oxidative and chemically degrades quickly. By testing various solvents and binders, researchers in Wang&rsquos lab at UC San Diego were able to find an ink formulation that makes AgO viable for printing. As a result, the battery can be printed in only a few seconds once the inks are prepared. It is dry and ready to use in just minutes. The battery could also be printed in a roll-to-roll process, which would increase the speed and make manufacturing scalable.

The batteries are printed onto a polymer film that is chemically stable, elastic, and has a high melting point (about 200 degrees C or 400 degrees Fahrenheit ) that can be heat sealed. Current collectors, the zinc anode, the AgO cathode and their corresponding separators each constitute a stacked screen-printed layer.

The team is already at work on the next generation of the battery, aiming for cheaper, faster charging devices with even lower impedance that would be used in 5G devices and soft robotics that require high power and customizable and flexible form factors.


New Battery Is 10 Times More Powerful Than State of the Art, Flexible and Rechargeable

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells. Credit: University of California San Diego

A team of researchers has developed a flexible, rechargeable silver oxide-zinc battery with a five to 10 times greater areal energy density than state of the art. The battery also is easier to manufacture while most flexible batteries need to be manufactured in sterile conditions, under vacuum, this one can be screen printed in normal lab conditions. The device can be used in flexible, stretchable electronics for wearables as well as soft robotics.

The team, made up of researchers at the University of California San Diego and California-based company ZPower, details their findings in the December 7, 2020, issue of the journal Joule.

&ldquoOur batteries can be designed around electronics, instead of electronics needed to be designed around batteries,&rdquo said Lu Yin, one of the paper&rsquos co-first authors and a Ph.D. student in the research group of UC San Diego&rsquos nanoengineering Professor Joseph Wang.

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power.

&ldquoThis kind of areal capacity has never been obtained before,&rdquo Yinsaid. &ldquoAnd our manufacturing method is affordable and scalable.&rdquo

The areal capacity for this innovative battery is 50 milliamps per square centimeter at room temperature &mdash this is 10-20 times greater than the areal capacity of a typical Lithium ion battery. So for the same surface area, the battery described in Joule can provide 5 to 10 times more power. Credit: University of California San Diego

The new battery has higher capacity than any of the flexible batteries currently available on the market. That&rsquos because the battery has a much lower impedance &mdash the resistance of an electric circuit or device to alternative current. The lower the impedance, the better the battery performance against high current discharge.

&ldquoAs the 5G and Internet of Things (IoT) market grows rapidly, this battery that outperforms commercial products in high current wireless devices will likely be a main contender as the next-generation power source for consumer electronics,&rdquo said Jonathan Scharf the paper&rsquos co-first author and a Ph.D. candidate in the research group of UC San Diego&rsquos nanoengineering Professor Ying Shirley Meng.

The batteries successfully powered a flexible display system equipped with a microcontroller and Bluetooth modules. Here too the battery performed better than commercially available Li coin cells.

The printed battery cells were recharged for more than 80 cycles, without showing any major signs of capacity loss. The cells also remained functional in spite of repeated bending and twisting.

&ldquoOur core focus was to improve both battery performance and the manufacturing process,&rdquo said Ying Shirley Meng, director of the UC San Diego Institute for Materials Discovery and Design and one of the paper&rsquos corresponding authors.

To create the battery, the researchers used a proprietary cathode design and chemistry from ZPower. Wang and his team contributed their expertise in printable, stretchable sensors and stretchable batteries. Meng and her colleagues provided their expertise in advanced characterization for electrochemical energy storage systems and characterized each iteration of the battery prototype until it reached peak performance.

The recipe to better performance

The battery&rsquos exceptional energy density is due to its silver oxide-zinc, (AgO-Zn)chemistry. Most commercial flexible batteries use a Ag2O-Zn chemistry. As a result, they usually have limited cycle life and have low capacity. This limits their use to low-power, disposable electronics.

AgO is traditionally considered unstable. But ZPower&rsquos AgO cathode material relies on a proprietary lead oxide coating to improve AgO&rsquos electrochemical stability and conductivity.

As an added benefit, the AgO-Zn chemistry is responsible for the battery&rsquos low impedance. The battery&rsquos printed current collectors also have excellent conductivity, which also helps achieve lower impedance.

Improved manufacturing

But AgO had never been used in a screen-printed battery before, because it is highly oxidative and chemically degrades quickly. By testing various solvents and binders, researchers in Wang&rsquos lab at UC San Diego were able to find an ink formulation that makes AgO viable for printing. As a result, the battery can be printed in only a few seconds once the inks are prepared. It is dry and ready to use in just minutes. The battery could also be printed in a roll-to-roll process, which would increase the speed and make manufacturing scalable.

The batteries are printed onto a polymer film that is chemically stable, elastic, and has a high melting point (about 200 degrees C or 400 degrees Fahrenheit ) that can be heat sealed. Current collectors, the zinc anode, the AgO cathode and their corresponding separators each constitute a stacked screen-printed layer.

The team is already at work on the next generation of the battery, aiming for cheaper, faster charging devices with even lower impedance that would be used in 5G devices and soft robotics that require high power and customizable and flexible form factors.


Kyk die video: What are the Metals Used In Lithium Ion Battery? Skill-Lync (Oktober 2021).